Samson Abramsky

Professor Samson Abramsky FRS
Room 206, Wolfson Building, Parks Road, Oxford OX1 3QD
Interests
I have worked in a wide range of areas in the semantics and logic of computation, including concurrency, domain theory (especially domain theory in logical form), lambda calculus, semantics of programming languages, and abstract interpretation and program analysis. I have played a leading role in the development of game semantics and its applications to the semantics of programming languages, in interaction categories, and in geometry of interaction, and connections with traced monoidal categories and realizability. More recently, I have become increasingly interested in connections between computer science and other scientific disciplines. I believe that the distinctive methods of computer science, above all compositional semantics and logic, have much to offer across a broad sweep of the physical and biological sciences, and to the modelling of complex systems. In particular, I have worked extensively in the field of quantum information and computation.
I have been working on high-level methods for quantum computation and information. I pioneered categorical quantum mechanics with Bob Coecke. More recently, I have been working on a unified sheaf-theoretic approach to non-locality and contextuality. This has led to a number of developments, including a novel classification of mulitpartite entangled states, cohomological characterizations of non-locality and contextuality, a novel characterization of no-signalling involving signed measures (negative probabilities), and a unifying principle for Bell inequalities. There are also striking connections with a number of topics in computer science, including relational database theory, computational complexity and dependence logic. Current work is focussing on contextuality as a resource for quantum advantage. Topics include quantifying contextuality and a resource theory for contextuality, and connections with non-local games giving rise to a quantum monad on relational structures. This is ongoing work, with a number of collaborators past and present including Adam Brandenburger, Lucien Hardy, Shane Mansfield, Rui Soares Barbosa, Ray Lal, Phokion Kolaitis, Georg Gottlob, Kohei Kishida, Nadish de Silva, and Giovanni Caru. |
Biography
Samson Abramsky is Christopher Strachey Professor of Computing and a Fellow of Wolfson College, Oxford University. Previously he held chairs at the Imperial College of Science, Technology and Medicine, and at the University of Edinburgh.
He holds MA degrees from Cambridge and Oxford, and a PhD from the University of London.
He is a Fellow of the Royal Society (2004), a Fellow of the Royal Society of Edinburgh (2000), a Member of Academia Europaea (1993), and a Fellow of the ACM (2014).
His paper ``Domain theory in Logical Form'' won the LiCS Test-of-Time award (a 20-year retrospective) for 1987. The award was presented at LiCS 2007.
He was the Clifford Lecturer at Tulane University in 2008.
He was awarded the BCS Lovelace Medal in 2013.
He received the Alonzo Church Award for Outstanding Contributions to Logic and Computation in 2017.
He has played a leading role in the development of game semantics, and its applications to the semantics of programming languages. Other notable contributions include his work on domain theory in logical form, the lazy lambda calculus, strictness analysis, concurrency theory, interaction categories, and geometry of interaction. More recently, he has been working on high-level methods for quantum computation and information. He introduced categorical quantum mechanics with Bob Coecke. He introduced the sheaf-theoretic approach to contextuality and non-locality with Adam Brandenburger, and has contributed extensively to developing a structural theory of contextuality and its applications.
Selected Publications
-
Robust Constraint Satisfaction and Local Hidden Variables in Quantum Mechanics
S. Abramsky‚ G. Gottlob and P. Kolaitis
In Artificial Intelligence (IJCAI '13)‚ 2013 23rd International Joint Conference on. Pages 440−446. AAAI Press. 2013.
Details about Robust Constraint Satisfaction and Local Hidden Variables in Quantum Mechanics | BibTeX data for Robust Constraint Satisfaction and Local Hidden Variables in Quantum Mechanics | Download (pdf) of Robust Constraint Satisfaction and Local Hidden Variables in Quantum Mechanics
-
Logical Bell Inequalities
Samson Abramsky and Lucien Hardy
In Physical Review A. Vol. 85. No. ARTN 062114. Pages 1−11. 2012.
Details about Logical Bell Inequalities | BibTeX data for Logical Bell Inequalities | DOI (10.1103/PhysRevA.85.062114) | Link to Logical Bell Inequalities
-
The Sheaf−Theoretic Structure of Non−Locality and Contextuality
S. Abramsky and A. Brandenburger
In New Journal of Physics. Vol. 13. Pages 113036−113075. 2011.
Details about The Sheaf−Theoretic Structure of Non−Locality and Contextuality | BibTeX data for The Sheaf−Theoretic Structure of Non−Locality and Contextuality | DOI (10.1088/1367-2630/13/11/113036) | Link to The Sheaf−Theoretic Structure of Non−Locality and Contextuality