Mobile and People-centric Systems and Sensing
The design of mobile devices that collect and reason over people-centric data raise a unique combination of sensing, networking and systems challenges. We study how to achieve high-fidelity privacy-preserving continuous mobile sensing of a rich cross-section of the lives of both individuals and groups (e.g., health, workplaces, social interactions). Primarily, this activity considers how such goals can be accomplished through a mix of innovation spanning: networking, protocols and cloud resources; learning and systems algorithms; and, hardware/sensor design.
Faculty
Research
Students
Selected Publications
-
Robust Occupancy Inference with Commodity WiFi
Chris Xiaoxuan Lu‚ Hongkai Wen‚ Han Zou‚ Hao Jiang‚ Lihua Xie and Niki Trigoni
In IEEE International Conference on Wireless and Mobile Computing‚ Networking and Communications (WiMob). 2016.
Details about Robust Occupancy Inference with Commodity WiFi | BibTeX data for Robust Occupancy Inference with Commodity WiFi | Download (pdf) of Robust Occupancy Inference with Commodity WiFi
-
-