Min Wu
Min Wu
Wolfson Building, Parks Road, Oxford OX1 3QD
Interests
Artificial Intelligence Safety; Formal Methods.
Specifically, my research interests are (1) robustness guarantees for deep neural networks, (2) verification and testing of deep learning, and (3) explainable and interpretable machine learning.
Biography
I am a final year DPhil (PhD) Candidate under Prof. Marta Kwiatkowska at the Department of Computer Science, University of Oxford. I submitted my doctoral thesis titled "Robustness Evaluation of Deep Neural Networks with Provable Guarantees" in October 2019 and have passed the viva (oral examination) in February 2020.
Starting from October 2019, I have been a post-doctoral researcher in the same group, working on the explainability and interpretability of machine learning models for natural language processing.
Teaching
- 2019 - 2020 (HT): AIMS CDT Systems Verification, Teaching Assistant
- 2019 - 2020 (MT): Probabilistic Model Checking, Class Tutor
- 2018 - 2019 (MT): Probabilistic Model Checking, Class Tutor
- 2017 - 2018 (MT): Probabilistic Model Checking, Class Tutor
- 2016 - 2017 (MT): Probabilistic Model Checking, Practical Demonstrator
Selected Publications
-
A Game−Based Approximate Verification of Deep Neural Networks with Provable Guarantees
Min Wu‚ Matthew Wicker‚ Wenjie Ruan‚ Xiaowei Huang and Marta Kwiatkowska
In Theoretical Computer Science. Vol. 807. Pages 298 − 329. 2020.
In memory of Maurice Nivat‚ a founding father of Theoretical Computer Science − Part II
Details about A Game−Based Approximate Verification of Deep Neural Networks with Provable Guarantees | BibTeX data for A Game−Based Approximate Verification of Deep Neural Networks with Provable Guarantees | DOI (10.1016/j.tcs.2019.05.046) | Link to A Game−Based Approximate Verification of Deep Neural Networks with Provable Guarantees
-
Robustness Guarantees for Deep Neural Networks on Videos
Min Wu and Marta Kwiatkowska
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.
Details about Robustness Guarantees for Deep Neural Networks on Videos | BibTeX data for Robustness Guarantees for Deep Neural Networks on Videos | Link to Robustness Guarantees for Deep Neural Networks on Videos
-
Gaze−based Intention Anticipation over Driving Manoeuvres in Semi−Autonomous Vehicles
Min Wu‚ Tyron Louw‚ Morteza Lahijanian‚ Wenjie Ruan‚ Xiaowei Huang‚ Natasha Merat and Marta Kwiatkowska
In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Pages 6210−6216. November, 2019.
Details about Gaze−based Intention Anticipation over Driving Manoeuvres in Semi−Autonomous Vehicles | BibTeX data for Gaze−based Intention Anticipation over Driving Manoeuvres in Semi−Autonomous Vehicles | DOI (10.1109/IROS40897.2019.8967779) | Link to Gaze−based Intention Anticipation over Driving Manoeuvres in Semi−Autonomous Vehicles