MSc Foundations of Computer Science: course materials

This page is maintained by Paul Goldberg, teaching FCS in Michaelmas term 2016–17; please re-visit this page since it is updated regularly.

my detailed web page

my official web page

department FCS web page (some past exam papers)

Lectures: 4:00pm on Mondays and Fridays, Lecture theatre A, weeks 1 to 8 (official timetable)

Office hours: I will usually be free to talk after lectures.

Classes: Problem-based exercise classes in weeks 3–8.
Grouptutor/marker place time
1 Enrico Marchioniroom 441Friday 9am, weeks 3–8
2 Aris Filos-Ratsikasroom 441Friday 10am, weeks 3–8

Hand in exercises by 5:30pm on the preceding Tuesday in the marker’s pigeon hole or by email.

Textbook: Introduction to the Theory of Computation 2nd Edition by Mike Sipser. There are other books that cover all/most of the material in this course, e.g. Models of Computation: exploring the Power of Computing by John E. Savage; Introduction to Automata Theory, Languages and Computation by Hopcroft, Motwani, and Ullman; An Introduction to Formal Languages and Automata by Linz; Computational Complexity by Papadimitriou.

slides 5

intro to predicate logic, and computational aspects

28.11.16: got as far as Trakhtenbrot’s theorem. 2.12.16: more details of proof of Trakhtenbrot’s theorem, other undecidability results.

slides 4

Computational complexity (about 4 lectures)

14.11.16: introduction to the complexity classes P and NP. Polynomial-time reducibility, and we noted the analogy with reductions in the context of proofs of undecidability. The concept of problems that are complete for a complexity class.

18.11.16: propositional logic and Cook’s theorom. 21.11.16: Polynomial-time reductions, e.g. reduction from LATIN SQUARE COMPLETION to SUDOKU

slides 3

Undecidability (about 2 lectures)

lecture 7.11.16: undecidability of the Halting Problem; reductions, and how we can use pre-existing undecidability results to obtain new ones.

slides 2

Slides for 4-5 lectures (context-free languages; Turing machines, recursive languages)

Lecture 31.10.16: operation of TMs; deciding versus accepting; Church-Turing thesis (textbook Chapter 3)

Lecture 28.10.16: Pumping lemma for CFLs; Turing machines. TM example another TM example (examples are useful, but are missing from the slides themselves). Examples of TMs in textbook, pp.142–147

Lecture 21.10.16: get started on equivalence of PDAs and CFGs. (chapter 2.2 of textbook; this result is similar to Kleene’s theorem, showing that 2 different language representations have the same expressive power.) 24.10.16: equivalence of PDAs and CFGs.

Lecture 17.10.16: introduction to pumping lemma and examples. (Exercise: construct a non-regular (formal) language for which the pumping lemma cannot be applied directly to verify that it is not regular.)

slides 1

Slides for first 2-3 lectures; textbook chapter 0, 1.1; examples on p38 onwards may be helpful.

Lecture 10.10.16: general overview and introduction to finite automata.

Lecture 14.10.16: reached slide 42; see textbook p44: the operations union, concatenation, and star; see textbook chapter 1.2: Nondeterminism, NFA examples p51 onwards; p55: general idea of proof that every NFA has an equivalent DFA; p59 onwards: detailed proofs of closure properties

Lecture 17.10.16: conversion of finte automaton to equivalent regular expression (see Chapter 1.3 of textbook), introduction to Pumping Lemma (Chapter 1.4 of textbook)

Proofs: what is required, and getting started.

sample proof (of the “union” construction (many other detailed proofs can be found in the textbook)