| 20/01/2016 |
Introduction to Machine Learning |
[slides] |
HTF Chap. 1
Mur Chap. 1
Bis Chap. 1
Hay Intro, Chap. 1
|
| 22/01/2016 |
Linear Regression |
[before] [after] |
HTF Chap. 2.1-3, Chap 3.1,3.2
Mur Chap. 7.1-2, 7.4
Bis Chap. 3.1
|
| 27/01/2016 |
Maximum Likelihood |
[before] [after] |
Normal distribution,
Laplace distribution,
Covariance, Entropy
Mur Chap. 2.8, 4.1, 7.3-4
Bis Chap. 2.4, 3.2
|
| 29/01/2016 |
Basis Expansion, Regularization, Validation |
[before] [after] |
Mur Chap. 6.4-5, 7.1-2
HTF Chap. 3.4, 7
Bis Chap. 1.3-5, 3.1-2
|
| 03/02/2016 |
Regularization, Validation |
[before] [after]
|
Mur Chap. 6.4-5, 7.1-2
HTF Chap. 3.4, 7
Bis Chap. 1.3-5, 3.1-2
|
| 05/02/2016 |
Optimisation |
[before] [after]
|
Linear Programming, Gradient, Hessian,
Gradient Descent, SGD Tricks (Léon Bottou)
|
| 10/02/2016 |
Optimisation, Logistic Regression |
[before] [after]
|
Mur Chap 8 |
| 12/02/2016 |
Multi-class Logistic Regression, SVMs |
[before][after]
|
Mur Chap 14.5
HTF Chap 4.5, Chap 12
|
| 17/02/2016 |
SVMs, Kernel Methods |
[before][after]
|
Mur Chap 14
HTF Chap 4.5, Chap 12
|
| 19/02/2016 |
Neural Networks, Backpropagation |
[before][after]
|
Nie Chap 1, 2
GBC Chap 6
|
| 24/02/2016 |
Training Neural Networks |
[before][after]
|
Nie Chap 3, 5
GBC Chap 7,8
|
| 26/02/2016 |
Convolutional Networks |
[before][after]
|
Nie Chap 6
GBC Chap 9
|
| 02/03/2016 |
Dimensionality Reduction and Multidimensional Scaling |
[before][after]
|
HSF Chap 14.5, 14.8
Mur Chap 12.2-4
|
| 04/03/2016 |
Clustering |
[before][after]
|
HSF Chap 14.3, 14.8
Mur Chap 25.4-5
|
| 09/03/2016 |
Clustering, Reinforcement Learning |
[slides]
|
SB Chap 1, 3
|
| 11/03/2016 |
Reinforcement Learning |
[slides]
|
SB Chap 1, 3
|